FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis

نویسندگان

  • Len Verbeke
  • Inge Mannaerts
  • Robert Schierwagen
  • Olivier Govaere
  • Sabine Klein
  • Ingrid Vander Elst
  • Petra Windmolders
  • Ricard Farre
  • Mathias Wenes
  • Massimiliano Mazzone
  • Frederik Nevens
  • Leo A. van Grunsven
  • Jonel Trebicka
  • Wim Laleman
چکیده

Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis.

Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid-FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid-FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease s...

متن کامل

Modeling and Experimental Studies of Obeticholic Acid Exposure and the Impact of Cirrhosis Stage

Obeticholic acid (OCA), a semisynthetic bile acid, is a selective and potent farnesoid X receptor (FXR) agonist in development for the treatment of chronic nonviral liver diseases. Physiologic pharmacokinetic models have been previously used to describe the absorption, distribution, metabolism, and excretion (ADME) of bile acids. OCA plasma levels were measured in healthy volunteers and cirrhot...

متن کامل

Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice

OBJECTIVE Nonalcoholic steatohepatitis (NASH) is an unmet need associated with metabolic syndrome. There are no approved therapies for NASH; however, glucagon-like peptide-1 receptor (GLP-1R) and farnesoid-X receptor (FXR) agonists are promising drug targets. We investigated the therapeutic effects of co-administration of a GLP-1R agonist, IP118, with FXR agonist obeticholic acid (OCA) in mice....

متن کامل

Targeting bile acids and lipotoxicity for NASH treatment

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, affecting approximately 20%-30% of the population in Western countries. Nonalcoholic steatohepatitis (NASH) is the progressive form of NAFLD that can develop into cirrhosis and hepatocellular carcinoma (HCC). However, the underlying mechanism of progression of steatosis to NASH and cirrhosis is poorly understood....

متن کامل

Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters.

The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016